
Systems of Ordinary Differential Equations Differential Equations X. Du

 Useful for describing sets of dependent differential equations.

o Example: yxx ' , yxy '

o Applications:

 Multiple things that respond to each other

 A spring-mass system with multiple springs and masses.

 A mixing tank system with multiple tanks

 A circuit with multiple closed loops

 Economic models

 The most common systems are first-order linear systems of ODEs.

o Homogeneous version: xAx


' More next page

o Non-homogeneous version:)(' trxAx


 More in two pages

o Why do only first-order systems suffice? Because higher-order linear systems can

be rewritten as a first-order linear system.

o Example: Consider the second-order linear system yyxxx 5'22'"  ,

yyxxy  ''2" . Now, rewrite the system representing 'xx  , 'yy  (think of

these as completely different variables with no connection to the previous

variables at all). Then we have yyxxx  252'  , yyxxy   2' . This

can be represented as the homogeneous first-order system of ODEs




























































y

y

x

x

y

y

x

x









1121

1000

2512

0010

' .

 Non-linear systems are often not solvable by hand. Numerical methods use critical point

analysis with Jacobian matrices to approximate an autonomous system near critical points.

Further notes:

 Computer programs (i.e. MATLAB) use a system of first-order equations to numerically

solve higher-order differential equations using the Runge-Kutta numerical method.

o Example: 0'"  cybyay can be rewritten using 'yx  :

  0' cybxax y
a

c
x

a

b
x ' 















 










y

x

y

x
a
c

a
b

01
'

 In this case where we’re solving this numerically, a, b, and c don’t have to

be constants – they can be functions varying with y, so long as a is not 0.

 Euler’s Method for systems of ODEs (not really different from previous)

o Uses linear approximation. Let)(tr


be a parametric vector-valued function.

o Requires a first-order system),(' trFr


 and a point)(otr


 i.e. IVP

o Uses very small steps for dt. dttrFrd),(




o Algorithm:

 Calculate dttrFrd),(


 . F usually involves matrix operations.

 dttt nn 1 , rdrr nn


1

