Systems of Ordinary Differential Equations

• Useful for describing sets of dependent differential equations.

- Example: x' = x + y, y' = x y
- Applications:
 - Multiple things that respond to each other
 - A spring-mass system with multiple springs and masses.
 - A mixing tank system with multiple tanks
 - A circuit with multiple closed loops
 - Economic models
- The most common systems are first-order linear systems of ODEs.
 - Homogeneous version: $\vec{x}' = A\vec{x}$ More next page
 - Non-homogeneous version: $\vec{x}' = A\vec{x} + \vec{r}(t)$ More in two pages
 - Why do only first-order systems suffice? Because higher-order linear systems can be rewritten as a first-order linear system.
 - Example: Consider the second-order linear system x'' = x'-2x+2y'+5y,
 - y''=2x'-x+y'-y. Now, rewrite the system representing $\dot{x} = x'$, $\dot{y} = y'$ (think of these as completely different variables with no connection to the previous variables at all). Then we have $\dot{x}'=-2x+\dot{x}+5y+2\dot{y}$, $\dot{y}'=-x+2\dot{x}-y+\dot{y}$. This can be represented as the homogeneous first-order system of ODEs

 $\begin{pmatrix} x \\ \dot{x} \\ y \\ \dot{y} \end{pmatrix}' = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -2 & 1 & 5 & 2 \\ 0 & 0 & 0 & 1 \\ -1 & 2 & -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ \dot{x} \\ y \\ \dot{y} \end{pmatrix}'.$

• Non-linear systems are often not solvable by hand. Numerical methods use critical point analysis with Jacobian matrices to approximate an autonomous system near critical points.

Further notes:

- Computer programs (i.e. MATLAB) use a system of first-order equations to numerically solve higher-order differential equations using the Runge-Kutta numerical method.
 - Example: ay''+by'+cy = 0 can be rewritten using x = y':

•
$$ax'+bx+cy=0 \Rightarrow x'=-\frac{b}{a}x-\frac{c}{a}y$$
 $\begin{pmatrix} x\\ y \end{pmatrix}' = \begin{pmatrix} -\frac{b}{a} & -\frac{c}{a}\\ 1 & 0 \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}$

- In this case where we're solving this numerically, *a*, *b*, and *c* don't have to be constants they can be functions varying with *y*, so long as *a* is not 0.
- Euler's Method for systems of ODEs (not really different from previous)
 - Uses linear approximation. Let $\vec{r}(t)$ be a parametric vector-valued function.
 - Requires a first-order system $\vec{r}' = F(\vec{r}, t)$ and a point $\vec{r}(t_o)$ i.e. IVP
 - Uses very small steps for dt. $d\vec{r} = F(\vec{r}, t)dt$
 - Algorithm:
 - Calculate $d\vec{r} = F(\vec{r}, t)dt$. *F* usually involves matrix operations.
 - $t_{n+1} = t_n + dt$, $\vec{r}_{n+1} = \vec{r}_n + d\vec{r}$