
Systems of Ordinary Differential Equations  Differential Equations  X. Du 

 

 Useful for describing sets of dependent differential equations. 

o Example: yxx ' , yxy '  

o Applications: 

 Multiple things that respond to each other 

 A spring-mass system with multiple springs and masses. 

 A mixing tank system with multiple tanks 

 A circuit with multiple closed loops 

 Economic models 

 The most common systems are first-order linear systems of ODEs. 

o Homogeneous version: xAx


'   More next page 

o Non-homogeneous version: )(' trxAx


  More in two pages 

o Why do only first-order systems suffice? Because higher-order linear systems can 

be rewritten as a first-order linear system. 

o Example: Consider the second-order linear system yyxxx 5'22'"  ,

yyxxy  ''2" . Now, rewrite the system representing 'xx  , 'yy  (think of 

these as completely different variables with no connection to the previous 

variables at all). Then we have yyxxx  252'  , yyxxy   2' . This 

can be represented as the homogeneous first-order system of ODEs
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 Non-linear systems are often not solvable by hand. Numerical methods use critical point 

analysis with Jacobian matrices to approximate an autonomous system near critical points. 

 

Further notes: 

 Computer programs (i.e. MATLAB) use a system of first-order equations to numerically 

solve higher-order differential equations using the Runge-Kutta numerical method. 

o Example: 0'"  cybyay can be rewritten using 'yx  : 
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 In this case where we’re solving this numerically, a, b, and c don’t have to 

be constants – they can be functions varying with y, so long as a is not 0. 

 Euler’s Method for systems of ODEs (not really different from previous) 

o Uses linear approximation. Let )(tr


be a parametric vector-valued function. 

o Requires a first-order system ),(' trFr


 and a point )( otr


  i.e. IVP 

o Uses very small steps for dt. dttrFrd ),(


  

o Algorithm: 

 Calculate dttrFrd ),(


 . F usually involves matrix operations. 

 dttt nn 1 , rdrr nn


1  


